УДК 621.747.59: 62-408.2

Становский А. Л., Лысенко Т. В., Березовский А. А., Андросюк А. В.

МОДЕЛИРОВАНИЕ ПРОЦЕССА ФОРМИРОВАНИЯ ПОКРЫТИЙ НА ЛИТЫХ ДЕТАЛЯХ МАШИН

Одним из прогрессивных способов финишной обработки литых деталей являются металлические покрытия. Покрытия играют большую роль в современных технологиях повышения качества и эксплуатационной надежности литых деталей машин. Качество этих покрытий зависит от многих факторов, но главными из них являются прочность и пористость. Так, характер разрушения, например, напыленных газотермических покрытий при совместном деформировании с материалом литой основы зависит от соотношения их адгезионной и когезионной прочности. Однако величины последних определяются, главным образом, пористостью и наличием окисленных зон в покрытии [1].

При исследовании дефектов тонкопленочных покрытий, полученных напылением в вакууме (рис. 1, 2), очень важно четко определять их качественную и количественную зависимость от состава или параметров технологического процесса [2, 3].

Рис. 1. Отрыв фрагмента покрытия из-за недостаточной прочности сцепления с подложкой (× 2000)

Рис. 2. Дефекты покрытия в виде капельной фазы (× 500)

Капельная фаза в теле покрытия с точки зрения влияния на механические свойства представляет собой ту же пористость. От пористости зависят почти все физико-механические свойства покрытий. Эта зависимость столь сильна, что часто пористость рассматривают в качестве параметра состояния в функциональной зависимости «численная характеристика свойства – пористость» [4].

Величины, определяющие проводимость (электро- и теплопроводность, магнитную и диэлектрическую проницаемости), упругость (нормальный и сдвиговый модуль упругости), сопротивление пластической деформации (предел текучести, твердость), монотонно убывают с увеличением пористости и в общем виде могут описываться обобщенной степенной биноминальной функцией [5]:

$$\beta = \beta_0 (1 - \Pi)^m \,, \tag{1}$$

где β — численная характеристика некоторого свойства пористого тела; β_0 — то же для материала, идентичного в структурном соотношении, но не содержащего пор; Π — пористость; m — показатель степени (m > 1).

Многообразие факторов, ответственных за формирование пористой структуры напыленных плазменных покрытий, обусловливает трудности постановки аналитических методов изучения пористости. Количество таких работ ограничено, и выполнены они при весьма вольных допущениях [6, 7].

Кроме того, в основном исследовалась зависимость пористости покрытия только от единичных параметров напыления.

Целью настоящей работы является создание модели формирования плазменного покрытия на литых деталях машин, основной задачей которой является определение пористости покрытия в зависимости от параметров процесса напыления.

Главной отличительной чертой предлагаемой модели является то, что во внимание принимаются практически все параметры напыления, в значительной мере влияющие на пористость.

Это стало возможным, благодаря использованию нейронной сети в качестве «аппроксиматора» зависимостей пористости от отдельных параметров. При моделировании сделано допущение, что размер упрочняемой детали намного больше размера частицы напыляемого порошка.

На структурной схеме модели (рис. 3) первым блоком обработки входных данных является однородная трехслойная нейронная сеть с последовательными связями и с обучением методом *back propagation* [8, 9]. Она обучается по результатам полученных экспериментальных данных [2, 10] и аналитическим зависимостям пористости от отдельных параметров напыления [2, 10, 11].

На вход нейронной сети поступают значения технологических параметров напыления, требующие предварительной обработки перед подачей в блок стохастической обработки $(X_1 \dots X_{17})$: материал подложки, теплофизические свойства подложки, температура подогрева подложки, коэффициент сложности формы напыляемого изделия, состав напыляемого порошка, теплофизические свойства напыляемого порошка, скорость частиц порошка, сила тока плазменной установки, напряжение плазменной установки, размер эффективного пятна термического воздействия па подложку, размер эффективного пятна напыления, температура газовой струи, состав плазмообразующего газа, состав газовой среды напыления, дистанция напыления, расход распыляемого материала, место подачи материала в распылительную головку.

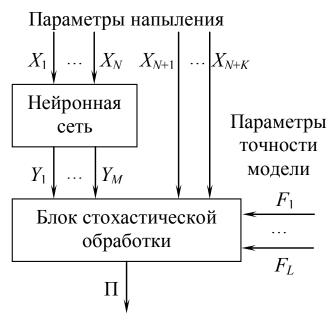


Рис. 3. Структурная схема модели напыления

Второй блок – блок стохастической обработки – моделирует послойное заполнение напыляемого покрытия отдельными частицами порошка. На каждом шаге моделирования добавляется некоторое количество частиц, располагаемых случайным образом на поверхности текущего фиксированного участка модели. Получено визуальное отображение модели в плоскости вертикального разреза покрытия (рис. 4).

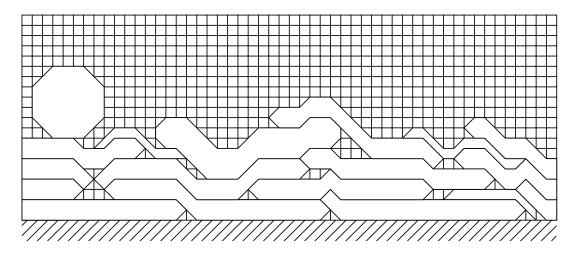


Рис. 4. Состояние стохастической модели после *n*-го шага нанесения покрытия

На входы $Y_1 \dots Y_7$ блока стохастической обработки поступают следующие выходы нейронной сети: коэффициент расплавленности частиц, коэффициент расплещивания) частиц, процент нерасплавленных частиц, среднее количество частиц, попадающих на поверхность за 1 с, скорость окисления подложки, скорость окисления материала порошка, средняя высота одного слоя.

Кроме того, на входы X_{18} ... X_{23} второго блока обработки подаются следующие параметры напыления: скорость перемещения газовой струи, средний размер частиц порошка, дисперсность частиц порошка, толщина напыляемого покрытия, шероховатость поверхности подложки, время между нанесением слоев.

Для осуществления компьютерного моделирования двухмерное пространство разреза покрытия должно быть дискретным (рис. 4). Для этого его разбивали на квадратные ячейки. Поскольку все объекты модели (частицы порошка) имеют округлые формы, предложена дискретная сетка с тремя состояниями ячеек: пустая; наполовину заполненная; полностью заполненная.

Это позволяет, не уменьшая шаг дискретизации, резко увеличить точность модели.

При определении пористости покрытий учитывали степень окисления подложки и напыляемого порошка. Для этого после окончания моделирования напыления каждого слоя полученное значение пористости корректировали по ее зависимости от степени окисления материалов:

$$\Pi_{i} = \Pi_{i} t_{cr} V_{or} / h_{i} , \qquad (2)$$

где Π_i ' — окончательная пористость *i*-го слоя;

 Π_{i} – пористость *i*-го слоя, полученная при моделировании;

 $t_{\text{сл}}$ – время между нанесением слоев;

 $v_{\text{оп}}$ — скорость окисления материала порошка;

 h_i – высота i-го слоя.

Точность стохастической модели управляется с помощью шага дискретизации пространства F_1 и шага дискретизации времени F_2 .

ВЫВОДЫ

В практике газотермического напыления необходимые значения пористости подбираются экспериментально. Для этого затрачиваются большое количество материалов, энергии и времени.

Разработанная модель позволяет избежать этого. Она дает возможность быстро и удобно прогнозировать пористость плазменных покрытий для каждого конкретного случая. При этом точность прогноза достаточно высокая, что подтверждено опытами с молибденовыми покрытиями. Их пористость определяли методом гидростатического взвешивания и с помощью разработанной модели. Сравнение полученных значений показало отклонение в 10–12 %.

ЛИТЕРАТУРА

- 1. Онищенко А. Г. Модель формирования покрытия при плазменном напылении порошковых материалов : материалы X семинара «Моделирование в прикладных научных исследованиях» / А. Г. Онищенко, А. Л. Становский. Одесса : ОНПУ, 2003. С. 26—29.
- 2. Тонконогий В. М. Система автоматизованого управління технологією нанесення зносостійких іонно-плазмових покрить / В. М. Тонконогий // Вісник Житомирського державного технологічного університету. 2004. Вип. 1(28). С. 141—145.
- 3. Тонконогий В. М. Моделирование прочности сцепления износостойких покрытий с подложкой с помощью виртуальных конечных элементов / В. М. Тонконогий // Резание и инструмент в технологических системах. Харьков: ХПИ, 2004. Вып. 66. С. 191–196.
- 4. Петров С. В. Плазменное газовоздушное напыление / С. В. Петров, И. Н. Карп. К. : Наук. думка, 1993. 494 с.
 - 5. Харламов Ю. А. Порошковая металлургия / Ю. А. Харламов . 1990. N 12. С. 36—41.
 - 6. Fukanuma H. Proc. Int. Thermal Spray Conf. (Orlando, Florida, 28 May 5 June 1992). P. 767–772.
- 7. Лазаренко Г. П. Применение безразмерных комплексных параметров при анализе свойств плазменнонапыленного нихрома / Г. П. Лазаренко, Л. И. Дехтярь, В. С. Лоскутов // Порошковая металлургия. − 1981. − № 2. − С. 41−44.
 - 8. Хайкин С. Нейронные сети: полный курс / С. Хайкин. М.: Вильямс, 2006. 1104 с.
 - 9. Горбань А. Н. Обучение нейронных сетей / А. Н. Горбань. М.: ПараГраф, 1990. 342 с.
- 10. Нанесение покрытий плазмой / В. В. Кудинов, П. Ю. Пекшев, В. Е. Белащенко и др. М. : Наука, 1990.-408~c.
- 11. Тушинский Л. И. Исследование структуры и физико-механических свойств покрытий / Л. И. Тушинский, А. В. Плохов. Новосибирск : Наука, 1986. 200 с.